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MEASUREMENTS OF BLOCKAGE ARFA RATIO, PRESSURE DISTRIBUTION, AND
BCUNDARY LAYER TRANSITION ON HOLLOW CYLINDFRS

Prepared by:
R. E. Lee

ABSTRACT: Wind tunnel tests were conducted to determine the feasibility
of using hollow cylinder models for boundary layer measurements. The
tests were conducted in the NOL 40 x 40 cm Aeroballistics Wind Tunnel No. 1
at Mach numbers from 2.2 to 5.C on models that had either an inside or
outside beveled leading edge. In these tests, inserts with smaller open-
ings were placed inside the model to determine the blockage area permitted
for the housing of a balance for measuring local skin friction. Both inter-
pal and external flows were surveyed by pitot and static pressure probes.
Boundary layer transition locations on the inner and outer surfaces were
measured with a surface probe. For the case of the outer surface, thess
data were compared with transition locations messured from schlieren
photographs.

Blockage area ratios were investigated with the internal bevel model and
were in closs agreement with theory provided the displacement of the inter-
nal boundary layer was added to the obstruction. The particular shape of
the obstruction appeared to have little effect on the shock-swallowing
ability of the model. For the case of the external bevel model, pressure
surveys indicated a slight adverse pressure gradient in the iuternal flow
and also consecutive reflactions of a weak disturbance originating at the
leading edge. Messurements with the surface probe and on schlieren photo-
graphs showed a delay of boundary layer transition on the outs. -urface of
the externsl bevel model.

The hollovw cylinder is an ideal model for studyinz boundary layer charac-
teristics. In attempting to obtain a surface with zero pressure gradient,
the outer surface of an internal bevel mndel is superior if the wind tunnel
flow is uniform. For poor wind tunnel flow, the best pressure distribution
may be obtained on the inner surface of an external bevel model by proper
location of the cylinder leading edge.

U. S. NAVAL ORDNANCE LABORATORY
WHITE OAK, MARYLAND
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Presented in this report is the second phase of a series of feazibility
studies on hollow cylinder models for direct locsl skia friction measure-
ments. The experimental data were obtained during the calendar year of
1953 and early 1954 in the 40 x 40 om Aeroballistics Wind Tunnel No. 1
at the U. S. Naval Ordnance Laboratcij. The prolect wma sponsored by
the Naval Bureau of Ordnance under task number NOL-Re%a-108.

The sauthor wishes to acknowledge the work of Mr. R. T. Schroth, who de-
signed the models.

EDWARD L. WOODYARD
Captain, USK
Commander

H. H. KURZWEG, Chief
Aerotallistic Research Department
By direction
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MEASUREMENTS OF BLOCKAGE AREA RATIC, PRESSURE DISTRIBUTION AND
BOUNDARY LAYER TRANSITION ON HOLLOW CYLINDERS

INTRODUCTION

l. The present investigation is the second of a series of tests of hollow
cylinder models. The purpose as was stated in reference a is: "...feasi-
bility studies aimed at the direct measurement of local laminar and turbu-
lent skin-friction drag, boundary-layer profiles, recovery temperatures,
and heat transfer characteristics on a model without pressure gradient.”
Skin-friction drag derived from temperature and pressure measurements at
Mach number 3.05 on a similar hollow cylinder model is reported by Brinich
and Diaconis, reference b. The cylinder data are consistent with flat
plate theories of Wilscn, reference c¢; Rubesin, Maydew and Varga, refer-
ence d. The advantages of hollow cylinder models over flat plate moaels
for wind tunnel investigations were discussed in reference b and by the
author in reference a.

2. One of the aims of this report was to determine ihe internal area
permisaible for the housing of a skin-friction balance inside the cylinder
without choking the internal flow. This permissible blockage was deter-
mined by inserting restrictions of varying cross-sectional areas into the
cylinder and checkinz optically with a schlieren system if the bow shock
was "swallowed."

3. Due to mechanical difficulties in housing the above-mentioned baiance
inside the cylinder, the question arvse whether it might be poasible to
house a balance outside the cylinder and measure the friction drag on the
internal surface. To investizate this possibility, pressure surveys were
made with pitot and static probes along the centerline of the cylinder and
with a pitot probe slong the internal and external surfaces at Mach numbers
2.15 and 3.25 on two hollow cylinders (the previously reported cylinder
with an internal bevel and a new cylinder with an external bevel leading
edge). In addition, static pressures on the inner surface of the external
bevel model vere measured at Mach numbers 2.15, 2.47, 2.36 and 3.25.
Boundary-layer trensitions detected on the outer surface with the surface
probe were checked with transitions from schlieren photographs of the
houndary layer.

EJUIPMENT AND PROCEDURE

4. All data were taken in the NOL Aeroballistics 'lind Tunnel No. 1.

This *unnel has a 40 x 40 cm test section and operates intermittently with
a maximum duration of about one minute to each blow. Supply air is teken
from the atmosphere, passed through dryers and the tunnel, and discharged
into an evacuated sphere. A detailed description of the tunnel is found
in reference e.
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5. Figure 1 is a sectional view of the hollow-cylinder models uvaed for
this investigation. All three models are made of brass, having an outer
diameter of 4 inches, an effective length (distance from leading edge of
model to leading edge of support) of 19 inches, and a .062-inch wall
thickness. Model (a) has a 10° internal bevel at the leading edge and
models (b) and (c) have 10° external bevel leadingz edges. Model (a) was
used for the shock "swallowing" investigation, models (a) and (b) were
used for pitot pressure and static pressure measurements (along center-
line) and boundary-layer transition investigations while model (c) was
uead solely for measuring the static pressure distribution on the inside
surface. HModel (c) has ten .080" inner diameter static pressure taps
located on the internal surface at 1, 3, 5, 7, 9, 11, 13, 15, 17 and
18.5 inches from the leading edge. FEach tap is offset circumferentislly
20° from the preceding tap as shown in Figure 1.

6. Surfacs roughness of the models was measured in microinches, r.m.s.,
with a profilometer made by the Physicists Research Company. Model (a)
averaged about 20 microinches on the outer surface and 18 microinches on
the inner surface. Model (b) averaged about 15 microinches on the outer
surface and 17 microinches on the inner surface. Model (c) averaged
roughly 26 micrcinches on the inner surfaece. The rouzhness measurements
on the inner surface were fairly uniform over the whole length of the
model with the maxizum roughness less than 32 microinches. The roughness
on the outer surface of models (a) and (b) was greater at both ends with
the maximum less than 60 microinches.

7. The radius of curvature of the sharp leading edges of ths three

models was determined from bakelite castings made of the annular leading
edges. Each casting was cut on a milling machine so that two of its sides
were perpendicular to the impression of the leading edge. The mcasure-
ments of the impression of the leading edge on the polished surface were
then made with a calibrated microscope. Figure 2 is a microphotograph

of a typical casting of the model leading edge. The lsading edge radius
of model (a) is .00062" + ,00022"; of model (b), .00077" 2 .00044%"; and
of model (c), .00122" &+ ,00038",

8. The models were mounted in the tunnel such that the axis of the hollow
cylinder coincided with the centerline of the tunnel within a tolerance

of three minutes. Two types of mount were used to support the models.
Originelly a center support mount was used, Figure l-a. This mount has
four side openings permitting a total exit area of approximately three
times ths cross-sectional intake area at the leading edge. The sting is
directly on the axis of the cylirder. Due to the belief that the aft por-
tion of this mount added to the choking of the internal flow, a second
mount was made with a straight open channel and an off-axis sting bent at

an angle of 17° to the axis on the vertical plane, also shown in Figure 1l-b.

9. The fiow into the hollow cylinder was restricted by three "dummy
balances,” A, B and ¢, Figures 3 and 4. The dummy balances (representing
the shell for housing a skin-friction balance) are made of aluminum, 6

2

R A LGN Lt} B

oy

(%t

Wise




By

NAVORD Report 3650

inches in length with a 15° internal bevel at the leading edge and a 7°
aft taper (see Figure 1-b). The restricting area is determined by the
wall thickness of the dummy balance. Figure 4 is a cross-sectional draw-
ing of each type together with its effective area. Type A is completely
cylindrical, type B consists of three internal ribs spaced 120° apart
with connecting members between the ribs, and type C consists of only
the three ribs. Types A and B are made to slide into the hollow cylinder
on two "O" rings and fixed to the cylinder by set screws. Type C is
mounted by attaching each rib directly to the inner wall of the cylinder.

10. Three methods were tried to induce the swallowing of the bow shock
in cases where the shock was not swallowed but very close to being swal-
lowed. First a subsonic diffuser was used at the rear of the cylinder

in an attempt to expand the internal flow. Second, a stream of compressed
air was ejected near the inner surface and close to the trailing edge,
naving a setup similar to that used in an induction wind tunnel. Third,

a diaphragm was placed across the front opening of the cylindsr and broken
immediately after external flow had been established, hoping that the
sudden change in pressure would force the shock through the model.

11. Figure 5-a is a drawing of the pitot probe and static probe attach-
nment used for measuring the pressure distribution along the centerline of
the models. The static probe attachment slid directly over the tip of the
pitot probe. Pressures were measured with i mesrcury menometer.

12. Pitot pressure distributions one inch from the centerline and on the
inside and outside surfaces were meesured with the thrwe-fingered probe
shown in Figure 5-b. Figure 6 is a schlieren photograph of ths surface
probe with the orifice well within the laminar boundary layer. Due to
the longer response time caused by the small orifice of the surface probe
(see dimensions in Figure 5-c) the Statham gauge together with a servo-
system indicator (designed by J. M. Kendall of NOL) replaced the mesrcury
manometer. This second method dscreased the volume of air in the system
and in turn reduced the response time.

13. Static pressure distributions on the inner aurface of the external
bevel model wore measured with a bank of mercury manometers designed by
J. M. Kendall for the intermittent tunnels. A detailed description of
thiz apparatus together with the single column manometer is contained in
ref'erence f.

14. Spark schlieren photographs of approximately one microsecond exposure
time were taken of the models in the tunnel. A swallowed bow shock was
indicated by the absence of the shock wave in front of the model as shown
on photographs of Figure 7. The beginning of boundary-layer transition
wvas determined on the photographs as the point where the smooth laminar
portion breaks up into a turbulent structure (indicated by arrows in
Figvres 8, 9 and 10).

DISCUSSION OF RESULTS

15. Pigure 11 is a comparison between the minimum area ratio inside ine
hollow cylinder producing a swallowed frcnt shock and the starting area

3
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ratio of a dif{user determined from the one-dimensional non-viscous energy
relation, references g and h. The experimental data represent the minimum
throat area ratios with the dummy balances located in the most downstream
position ieide the cylinder (the front shoulder of the dummy balance 20
inches downstream from the leading edge of the cylinder!. Thzse area ratios '
are approximately 7 percent higher than the theoretical wvalues. A better
agreement between the two is obtained by subtracting the displacement ares
of the turbulent boundary layer from the throat arez of the dummy balance
at the flow conditions just before the shock is swallowed, i.e., the Mech
nunber is assumed to be one. The theoretical displacement thickness from
reference i is:

Rq‘
where x = 20 inches

The resulting area is A%** = 2( p & - 8")2

vhere rt= —A2

The data corrected for boundary layer are plotted as the dark points in
Figure 11 and are in close agreement with the theoretical curve. It seems
that the cross-sectional area of an obstruction is of prime importance and
that its particular shape has little effect.

16. At Mach number 4.28 it wes found that the bow shock was swallowed with
a dumny balance in the upstream position (front shoulder 2 1/2 inches
downstream from the leading edge of the cylinder) but was not swallowed
with the same dummy balance placed at the downstream position inside the
cylinder. The choking at the latter position was caused by the increase
in boundary layer thickness on the inside surface®. The expansion section,
the air ejector and the diaphragm were applied with the dummy balance
located in this latter position but none of the three methods affected the
swallowing of the shock.

17. Static and pitot pressure distributions along the centerline of the
model are shown in Figures 12, 13 am’ 14. The data were converted to Mach
number by the Rayleigh pitot-tube relation. Figure 12 shows that when the
bow shock was not swallowed inside the internal bevel model, ths internal
flow was subsonic. Figure 13 shows strong reflectéed disturbances inside
the internal bevel model when the shock was swallowed. Figure 14 shows
weak reflected disturbances inside the external bevel model. The Mach
nunber variation after the initial shock (4 irnches from the leading edge)
was approximately 4 percent.

13. Longitudinal pressure surveys with a pitot probe one inch from the

centerlinc and with a surface probe directly in contact with the inner
aind vuter surfazre of both internal and external bevel models at M = 2.15

4
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and M = 3.25 are plotted in Figures 15, 16, 17 and 18. For comparison,
the pitot pressure distribution on the centerline is repeated in the
figures.

19. Boundary-layer transition locations detected with the surface probe
on outer surfaces agreed fairly well with transition location measured

on schlieren photographs as shown in Figures 15 through 18. The pressure,
detected by the surface probe, in the transition region was fluctuating;
vhile in the lamipnar and turbuient regions, the pressure was steady.

20. Pressure measured with a surface probe in direct contact with the
surface is somewhat higher in the laminar section of the boundar; layer
on the inner surface than in the laminar secticn of the outer surface as
seen in Fizure 16. This is contrary to the boundary layer theory that
the layer is thicker on the inner surface. Thia disagreemont arises from
the geometry of the surface probe in respect to the curvature of the
c¢ylinder. Teking an hypothetical condition where the outer ammular edge
of the boundary layer strikes the rectangular orifice cf the probe at
points A, B and C as drawn in Figure 5-c, the portion of the layer scocpe
by the probe is enclosed by the arc ABC and the edge of the probs in con-
tact with the model (shaded areas). By drawing chords AB and BC, divid-
ing the rectangle into triangles, it can be seen that the probe scoops
more of the free-stream flow on the inner surface than on the outer surfacs,
the difference being twice the flow enclosed by the arc ABC and the chords
AB and BC. The difference in pressure on the two surfaces is not as large
at Msch number 3.25 due to a thicker boundary layer.

21. Regions of boundary layer transition on the outer surface of the
models were located at approximately the same distance from the leading
edgs as the distance whers the leading edge shock would strike the inner
surfece. Whether the shock on the inside surface had any influence on
transition on the outside surface (heat condustion through the walii of
the cylinder) will be investigated in the near future on insulated hollow
cylinder models.

22, The location of the shock waves inside the cylinders have been esti-
mated from the pitot pressure data inside the cylinders. These shock

patterns are drawn in Figures 19 and 20. The estimates were based on the
following three assumptions:

a. The shock is indicated by a sharp rise in the pressure. The
assumed boundary of the shock is determined {rom pressure measurements at
three consecutive stations where the shcck is dstected at the second sta-

tion. This limit is represented by the horisontal bar in Figures 15 through
20.

b. The leading edge shocx wave is conical.

c. The angle of incidencs of the shock wave on the inner surface is
equal to its reflected angle.

e e AR 0
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23. Figure 21 is a graph of the static pressure distribution on the inner
surface of an external bevel hollew cylinder model at Mach numbers 2.15,
2.47, 2.86 and 3.25. A slight adverse pressure gradient along the inner
surface wvas noted at all four Mach numbers. These data are compared, in
Figure 22, to the static pressure distribution on the outer surface cf the
internal bevel model. The preasure distributions on the outar surface of
the internal bevel model were found to be in good agreement with distri-
butions measured in the clear tunnsl (reference a).

24. Transition from laminar to turbulent boundary layer on the external
surface is representsd graphically in Figure 23. Transition as it is seen
in schlieren photographs is the point where the smooth laminar layer sud-
denly disperses into a diffussd thicker layer (see Figures 8, 9 and 10).
The travel of this poin® is represented by the partially shaded areas of
the graphs. Each transition region represents results frox at least twelve
transition observations. It should be noted that there is a pronounced
delay in transition on the ext rnal bevel ngﬁol. Transition Reynolds
number 1gcroaoaa from.1.2 x 10 to 1.8 x 10° at Mach number 2.15 and from
1.4 x 10° to 2.2 x 10° at Mach number 3.25. Thiz mcre stable boundary
layer may be dus to the fevcrable pressure gradient over the shoulder of
the mocdel. Alsc the apparent location of the leading edge shock on the
internal surface should not be overlooked since, as pointed out in para-
graph 21, the initial shock of the internal bevel model may trip the outer
boundary layer and causes e=rly transition on the outside surface.

25. The increase in boundary layer stability caused by the shoulder of

a cone-cylinder was noted previcusly in comparing transition Reynoids
number of cone and cone-cylinder models tested at NOL. The shoulder effect
may therefore be the principel cause of transition delay on the cylinder.
In the graph of transition Reynolds mumber ve Mach number in Figure 8 of
reference a, transition Reynolds number of the cone-cylinder is somewvhat
higher than that of the cone. Transition on the cone-cylinder mcdel was
located on the cylindrical portion behind the shoulder. A report of this
phenomenon was made in the IAS Journal, reference k. A relatad effect

was presented at the Twenty-second Annual Meeting of the JAS titled: "The
Transition from a Turbulent to Laminar Boundary Layer" by J. Sternberg,
Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland.

CONCLUSIONS

25. The hollow cylinder is an ideal model for studying boundary layer
characteristics. In attempting to obtain a surface with zaro pressure
gradient, the outer surface of an internal bevel model is superior if the
wind tunnel flow is uniform. For poor wind tunnsl flow, the best pressure
distribution may be obtained on the inner surface of an external bevel
model by proper location of the cylinder lsading edge. Pressure surveys
inside an external bevel modsl show an adverse pressurs gradient along

ths inner surface and also disturbances from the leading edge. Regions
free of these disturbances can be located inside the cylinder.
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27. The maximum blockage erea retio permissible for ¢« "swallowed® bow
shock wave and availabls for the housing of a skin friction btalance in

a hollow cylinder is approxi.stely 15 percent of the cross-sectional arve
at Mach mmber 2.2 and incrsases to about 30 percent at Mnch mmber 5.C.
These figures agree very veil with the theoretical values for the starting
area of a supersonic diffuser provided a correction for the displacemsnt
of the boundary layer is added to the dlockage ares.

28. A dowmstream shift of ths boundary layer transition location on the
model is produced by a dlscontiraity of the model contour. Observations
of schlieren photographs showed that with a 10° shoulder shortly dowvnstream
of the leading edge, the m]_:r)z ocorresponds an incresse of transition

to 1.8 x at Mach 2.2 and from 1.4 x 106

tc 2.2 x at Moch 3.3. Transition locatiocn determined from a surface
probe in direot contact with the¢ extermal surface agreed with transition
location meazured on schlieren photographs.
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(a)
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F1G. 6 SCHLIEREN PHOTOGRAPH OF FLOW ON MOODEL
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